Напишите, что вы ищите, например, Эмаль ВД-АК-1325
ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ПОРОШКОВЫХ ЛКМ
Для получения порошковых красок применяют три разных способа:
• сухое смешение дисперсных компонентов;
• смешение в расплаве с последующим измельчением плава;
• диспергирование пигментов в растворе пленкообразователей с последующей отгонкой растворителя из жидкого материала.
Сухое смешение применяется при пигментировании предварительно измельченных термопластичных полимеров. При использовании этого способа нерасслаивающиеся стабильные композиции получаются только в том случае, если при смешении происходит дезагрегация зерен исходных материалов и образование новых смешанных агрегатов с большой контактной поверхностью между разнородными частицами. При сухом смешивании без измельчения зерен полимеров частицы пигментов и наполнителей только "опудривают" поверхность зерен полимеров снаружи. Полярные полимеры (поливинилбутираль, полиамиды, эфиры целлюлозы и др.) имеют хорошую адгезию к дисперсным пигментам и наполнителям. Неполярные полимеры (полиолефины, фторопласты и др.) значительно труднее смешиваются с наполнителями.
Жидкие компоненты – пластификаторы, отвердители, модификаторы как правило предварительно перетирают с пигментами и наполнителями, а затем смешивают с полимерами в шаровых, вибрационных и др. мельницах. Сухое смешение – наиболее простой способ, осуществляемый в различных смесителях, но получаемый при этом конечный продукт имеет недостаточно равномерное распределение пигментов.
Рис. 1 Технологическая схема производства порошковых красок
Процесс изготовления включает пять операций:
• дробление исходных компонентов до зерен размером 1 – 3 мкм;
• расплавление полимера или олигомера и смешение компонентов в расплаве;
• охлаждение расплава;
• измельчение расплава;
• сухой просев или сепарация порошка.
Дробление пигментов при производстве порошковых материалов производится практически только в экструдерах (червячных смесителях). Попытки использования других видов оборудования не оправдали себя.
Рис. 2 Диаграмма профиля температур при диспергировании порошкового материала в одношнековом экструдере
Главной частью экструдера является шнек, вращающийся в цилиндрическом корпусе (Рис. 2). Червяк захватывает сухую смесь "пленкообразователь – пигмент – наполнитель" из питающего бункера и пропускает ее через цилиндрический корпус, расплавляя и смешивая (перетирая) ее по мере продвижения. В промышленности порошковых красок используются два конкурирующих типа экструдеров: первый является двухшнековым экструдером с двумя совмещенными шнеками, вращающимися в одном направлении, второй – одношнековый экструдер, в котором шнек периодически двигается назад - вперед (т.н. смеситель co - compounder ).
Данный способ производства порошковых материалов позволяет резко улучшить дисперсность, сократить время смешивания и уменьшить опасность преждевременного отверждения порошка. Дисперсность частиц пигмента составляет от 1 до 20 мкм. При таком способе производства энергозатраты на смешение в расплаве и последующее измельчение более высокие, но они оправдываются высоким качеством покрытий и меньшей их толщиной по сравнению с сухим способом.
Недостатком данного способа производства порошковых красок является трудность точной подгонки цвета и необходимость зачистки оборудования при переходе с цвета на цвет.
Порошковые краски, получаемые испарением органических растворителей из жидких красок, наиболее дисперсны и имеют частицы округленной формы размером 20 – 40 мкм. Они отличаются более высокой красящей способностью и пониженной температурой отверждения. Их изготовление включает стадии обычного производства органорастворимых лакокрасочных материалов, а также отгонки растворителя в сушилках распылительного типа и улавливания конденсата отогнанного растворителя с возвращением его в производственный цикл. Недостатком этого способа является его чрезвычайная взрывоопасность, поэтому в качестве теплоносителя для сушки используется азот.
Будучи лакокрасочными материалами со стопроцентным сухим остатком, порошковые краски находят все большее и большее применение. Однако их использование ограничивается формой и габаритами окрашиваемых изделий, а также чувствительностью подложки к повышенной температуре.
Основными преимуществами порошковых красок по сравнению с традиционными органоразбавляемыми материалами являются:
Все порошковые краски могут быть разделены на две большие группы: термопластичные и термореактивные .
Технология порошковой окраски термопластичными порошковыми красками основывается на формировании покрытия без химических реакций, лишь за счет сплавления частиц при нагревании. Образующиеся из них покрытия термопластичны, обратимы. Их используют преимущественно для получения покрытий функционального назначения – химически стойких, противокоррозионных, антифрикционных, электроизоляционных. Покрытия обычно наносят толстыми слоями – 250 мкм и более. Типичные области их применения – это защита проволоки, труб, корзин посудомоечных машин, морозильных камер, шлицевых валов и узлов трения, переключателей и других изделий.
ТЕХНОЛОГИЯ ПОРОШКОВОЙ ОКРАСКИ ЭЛЕКТРОСТАТИЧЕСКИМ НАПЫЛЕНИЕМ
Рис. 3 Технология зарядки коронным разрядом
Наряду с достоинствами электростатическое напыление имеет ряд недостатков, которые обусловлены сильным электрическим полем между пистолетом-распылителем и деталью, которое может затруднить нанесение порошкового покрытия в углах и в местах глубоких выемок (Рис. 4). Это явление носит название эффекта клетки Фарадея. Данный дефект является результатом воздействия электростатических и аэродинамических сил.
Рис. 4 Эффект клетки Фарадея
На Рис. 4 показано, что при нанесении порошкового покрытия на участки, в которых действует эффект клетки Фарадея, электрическое поле, создаваемое распылителем, имеет максимальную напряженность по краям выемки. Силовые линии всегда идут к самой близкой заземленной точке и, скорее всего, концентрируется по краям выемки и выступающим участками, а не проникают дальше внутрь.
Это сильное поле ускоряет оседание частиц, образуя в этих местах порошковое покрытие слишком большой толщины.
Эффект клетки Фарадея наблюдается в тех случаях, когда наносят порошковую краску на металлоизделия сложной конфигурации, куда внешнее электрическое поле не проникает, поэтому нанесение ровного покрытия на детали затруднено и в некоторых случаях даже невозможно.
Рис. 5 Обратная ионизация
Обратная ионизация вызывается излишним током свободных ионов от зарядных электродов распылителя. Когда свободные ионы попадают на покрытую порошковой краской поверхность детали, они прибавляют свой заряд к заряду, накопившемуся в слое порошка. На поверхности детали накапливается слишком большой заряд. В некоторых точках величина заряда превышается настолько, что в толще порошка проскакивают микро-искры, образующие кратеры на поверхности, что приводит к ухудшению качества покрытия и нарушению его функциональных свойств. Обратная ионизация также способствует образованию дефекта "апельсиновой корки", снижению эффективности работы распылителей и ограничению толщины получаемых покрытий.
ТЕХНОЛОГИЯ ПОРОШКОВОЙ ОКРАСКИ ТРИБОСТАТИЧЕСКИМ НАПЫЛЕНИЕМ
В отличие от электростатического напыления, в данной системе нет генератора высокого напряжения для распылителя. Порошок заряжается в процессе трения (Рис. 6). Главная задача в данном процессе – увеличение числа и силы столкновений между частицами порошка и заряжающими поверхностями пистолета распылителя.
Рис. 6 Трибостатическое напыление
Одним из лучших акцепторов в трибоэлектрическом ряду является политетрафторэтилен (тефлон), он обеспечивает хорошую зарядку большинства порошковых красок, имеет относительно высокую износоустойчивость и устойчив к налипанию частиц под действием ударов.
Рис. 7 Отсутствие эффекта клетки Фарадея
Технология порошковой окраски термореактивными порошковыми красками основывается на том, что покрытие, в отличие от термопластичных материалов, формируется посредством химических реакций при нагревании. Такие покрытия имеют трехмерное строение, они неплавкие и нерастворимы, т. е. необратимы. Термореактивные краски служат для получения как функциональных покрытий, так и защитно-декоративных. Для получения покрытий функционального назначения наиболее широко применяют эпоксидные составы. Их наносят слоями 100-150 мкм на предварительно нагретую до 50-60 °C поверхность изделия в аппаратах кипящего слоя (многократно чередуя нагрев и погружение в порошок) или струйным распылением. Толщина покрытия, нанесенного таким способом, как правило, колеблется в пределах 300-500 мкм. Поэтому данный метод применяют для окраски изделий, имеющих небольшую площадь и сложную конфигурацию поверхности – роторов и статоров электродвигателей, труб (изнутри и снаружи), металлической арматуры, проволоки, сетки, катушек и т.д.
Технология порошковой окраски не сложна, однако, требует практических навыков и опыта работы.
Вместе с этим читают: " Советы по нанесению краски "
Статьи по теме:
Определение соответствия цвета лакокрасочного покрытия
22 Октября 2020
Проверка прочности лакокрасочного покрытия при ударе
5 Августа 2020